Epidemiologic Notes and Reports

Effects of Restricting Federal Funds for Abortion - Texas

In August 1977, federal funds for legally induced abortion for Title XIX (Medicaid)and Title XX-eligible women were restricted. Texas became 1 of the 31 states that subsequently withdrew the use of state funds to finance legally induced abortion. Recently the Texas State Department of Health attempted to measure the impact of that decision in 4 ways.

The first method was to review in detail all abortion-related deaths occurring in Texas from 1975 through 1979. Since the restriction, 1 Medicaideligible woman in Texas died from septic complications of an illegal abortion (1,2). She had previously obtained 2 legally induced abortion procedures funded by Medicaid. This death occurred along the Texas-Mexican border, an area associated with higher reported rates of complications after illegal abortion (3).

Secondly, in a large metropolitan area of Texas, a review was undertaken of 600 consecutive hospital charts of women with abortion-related complications that caused them to seek emergency medical care. The chart review revealed no increase after the restriction, compared to the time interval before the restriction, in either the number or proportion of Medicaid- or Title XX-eligible women admitted for abortion complications. If a large proportion of women were resorting to illegal abortion, such complications would be expected to increase.

A third approach to measure the impact of the restriction was an attempt to estimate the number of legally induced abortions among Medicaid-eligible women which were not obtained because of the restriction. A model developed by Princeton University's Office of Population Research was used to examine the proportion of pregnancies among such women that were terminated by abortion before and after the restriction of public funds (4). The expected number of abortions for 1978 was derived by applying the proportion of pregnancies that were terminated by abortion within a 6-month interval in 1976 to the number of pregnancies in the corresponding 6 -month interval in 1978. Based on these projections, an estimated 35% of pregnant Medicaideligible women who would have obtained a publicly funded, legally induced abortion before the funding restriction, did not obtain one afterwards.

Finally, continuation of pregnancy to term was assessed by comparing the fertility rate among Medicaid-eligible women, before and after the restriction, to the fertility rate among women not eligible for Medicaid in Texas. The fertility rate for the latter group increased 1.6% from 1976 to 1977 and 0.6% from 1977 to 1978 . On the other hand, the fertility rate among Medicaid eligible women increased 4.2% and 12.0% during the same periods, an increase consistent with the estimated percentage of pregnant Medicaid women not obtaining an induced abortion.

Reported by M Chrissman, R Moore, Nova Health Systems, Inc., San Antonio, Texas; L Mondy, PhD, B Weber, MSW, Texas Dept of Human Resources; WP Peter, MD, PC Price, MD, CR Webb, Jr, MD, State Epidemiologist, Texas State Dept of Health; JR Trussell, PhD, J Menken, PhD, Princeton University, Princeton, New Jersey; Field Services Unit, and Abortion Surveillance Br, Family Planning Evaluation Div, Bur of Epidemiology, CDC.

Editorial Note: On February 19, 1980, the U.S. Supreme Court temporarily supported a lower-court ruling that restriction of federal funds for medically necessary abortions was unconstitutional. The ruling broadened the definition of "medically necessary abortion" to include the woman's age, her familial situation, and physical, emotional, and psychological factors relevant to her well-being. The final ruling on this issue is pending.

Several previous investigations have examined the health effects of the restriction of federal funding for abortions $(4,5)$. The present study in Texas found more than onethird of the legal abortions expected among Medicaid-eligible women were not obtained in the postfunding restriction period. The data cited from the present study are consistent with those from a previous investigation in Texas, which found approximately 40% of the expected number of subsidized abortions were not being obtained in the interval after the funding restriction (5). Those low-income women who obtained legal abortions apparently paid for them through a combination of reduced clinic fees, public funds for ancillary services, and private sources (5).

In Texas, pregnant, low-income women who do not have federal or state funds for abortions do not appear to be resorting to illegal abortions to terminate unwanted pregnancies. These findings are consistent with those from a national monitoring system (3), which also could not document that the restriction of public funds for abortion caused a large percentage of Medicaid-eligible women to choose self-induced or non-physicianinduced abortions.

This decrease in expected legal abortions, the absence of an increase in illegal abortion, and the rising fertility rate among Medicaid-eligible women in Texas all imply that a substantial portion of women who would have obtained a publicly-funded abortion before the restriction are now more likely to continue their pregnancies to term.

References

1. MMWR 1977; 26:361.
2. MMWR 1978; 27:175.
3. Cates W Jr, Kimball AM, Gold J, et al. The health impact of restricting public funds for abortion. October 10, 1977-June 10, 1978. Am J Public Health 1979;69:945.
4. Trussell J, Menken J, Lindheim B, Vaughan B. The impact of restriction of Medicaid funding for abortion. Fam Plann Perspect (in press).
5. Rubin GL, Gold J, Cates W Jr. Response of low income women and abortion facilities to restriction of public funds for abortion: a study of a large metropolitan area. Am J Public Health 1979; 69:948-50.

Pesticide Poisoning in an Infant - California

On January 15, 1980, an 11-day-old boy was brought to San Francisco General Hospital because of a cyanotic spell. While in the Pediatric Outpatient Department, he had a respiratory arrest. He was promptly resuscitated but remained limp and relatively unresponsive to needle sticks. On physical examination he was noted to have pinpoint
pupils and excessive salivation. Narcotic intoxication was initially suspected, and naloxone was given but without benefit. He required mechanically-assisted ventilation for the next 16 hours.

Further history revealed that he was born following a normal pregnancy and delivery, and that he had been discharged from the nursery at age 3 days. He was initially kept at a relative's house because of his parents' concern about termite and roach spraying that had been done in their home around the time of delivery. He was bottle fed and had developed vomiting and increasing lethargy before the cyanotic episode. The parents did not think that the child had been directly exposed to the sprays, although the house had continued to smell strongly of insecticides.

Among the initial differential diagnoses were averted sudden infant death syndrome, toxin exposure, infant botulism, sepsis, and congenital adrenal syndrome. Because organophosphate poisoning was suspected, the infant was treated with atropine and promptly became more responsive. Red blood cell cholinesterase levels were depressed to 50% of normal low baseline levels, consistent with organophosphate poisoning. The San Francisco County Health Department was promptly notified of the suspected poisoning. The infant made a steady recovery and 8 days after admission was discharged to his parents (in temporary housing). Medical follow-up will include neurologic examinations and remeasurement of cholinesterase values.

The California Department of Food and Agriculture sampled for pesticides in the infant's home. The pesticide chlorpyrifos (Dursban) was found on dish towels, food preparation surfaces, and the infant's clothing.
Editorial Note: Chlorpyrifos is a commonly used "crack and crevice" insecticide with a long half life (>30 days) indoors. Use of this agent on food preparation surfaces is illegal. The infant's exposure to the pesticide was most likely both oral and cutaneous and probably lasted during the time he was in the home. It is unclear how the pesticide contaminated the infant's clothing-possibly it was due to placing the clothing on shelving that had been sprayed.

This case demonstrates several important points: 1) pesticide and other intoxications may mimic the sudden infant death syndrome, 2) pesticides must be used with extreme care, particularly in home settings, 3) infants and children have increased susceptibility to such agents, and 4) pesticide-related illnesses need to be reported promptly. (In this case, the law required that the county health officer be notified within 24 hours.)
Reported by J Dunphy, MD, M Kesselbrenner, MD, A Stevens, B Vlec, MD, San Francisco General Hospital; RJ Jackson, MD, Epidemiologic Studies Laboratory, California State Dept of Health Services, in the California Morbidity, April 11, 1980.

Follow-up on the Health Status of the Cuban Refugees

Approximately 100,000 Cuban refugees have arrived in the United States since April 21, 1980. Since the last MMWR report (1), 2 more centers-Fort Indiantown Gap, Pennsylvania, and Camp McCoy, Wisconsin-have been opened to process these refugees. There are now 5 such centers.

As of May 29, 54,953 refugees had been medically screened. From that group, 47,920 received chest X rays; 175 demonstrated suspected active or active tuberculosis (class A). and 596 , suspected inactive tuberculosis (class B). All abnormal X rays are followed up with

Cuban Refugees - Continued

sputum examinations. The processing center or a hospital under contract to the center follows up all such patients with appropriate treatment, except at Opa-Locka; at that site, because of the lack of housing facilities, further diagnostic evaluation is being done by the local health department and private health-care providers.

To date, 47,790 persons 15 years of age and older have received a serologic test for syphilis; 2,089 (4.4%) were reactive. Four of these persons have been diagnosed as having primary syphilis and 7, secondary syphilis. Of the patients with reactive serologies, 1,209 (57.9%) have been treated thus far. The minimum a patient receives is 2.4 million units of benzathine penicillin G. Those patients who remain in camp long enough receive a total of 7.2 million units, an amount sufficient to cure asymptomatic neurosyphilis; others are referred to the health department in the jurisdiction where they are to reside for completion of therapy.

A total of 2,769 children and young adults have been immunized with multiple-antigen measles-mumps-rubella (MMR) vaccine.

Two sporadic, non-fatal cases of Group B meningococcal meningitis occurred at Fort Chaffee, Arkansas. The patients were both males, aged 25 and 39 years. The close contacts of each patient received rifampin prophylaxis, and no further cases have occurred. Reported by the Cuban Refugee Activity, Quarantine Div, Special Pathogens Br, Bacterial Diseases Div, Bur of Epidemiology, CDC.

Reference

1. MMWR 1980;29:217-8.

DISEASE	22nd, WEEK ENDING		$\begin{gathered} \text { MEDIAN } \\ \text { 1975-1979 } \end{gathered}$	CUMULATIVE, FIRST 22, WEEKS		
	$\begin{gathered} \text { May J1, } \\ 1980 \\ \hline \end{gathered}$	$\begin{gathered} \text { June 2. } \\ 1979 \\ \hline \end{gathered}$		$\begin{gathered} \text { May } 31 . \\ 1980 \end{gathered}$	$\begin{gathered} \text { June } 2 . \\ 1979 \end{gathered}$	$\begin{gathered} \text { MEDIAN } \\ 1975.1979 \\ \hline \end{gathered}$
Aseptic meningitis	62	67	51	1.281	1.091	844
Brucallosis	1	-	3	70	43	78
Chickanpox	5,590	5,301	5,098	126.367	147,812	129,124
Diphtheria	-	1	1	2	4	45
Encaphalitis: Primary (arthropod-borne $\mathbf{\&}_{1}$ unspec.)	12	${ }^{9}$	12	245	208	257
Post-infectious	1	10	7	73	101	101
Hepatitis, Viral: Type B	354	243	249	6,800	5.838	6.201
Type A	447	467	554	10.921	12.361	13,503
Malaria Type unspacified	238	143	150	+,857	+.214	3,569
Malaria	45	8	8	655	206	167
Measler (rubeola)	598	372	1.272	9,514	8.920	17.293
Meningococcal infections: Total	32	49	27	1.363	1.382	938
Civilian Military	32	49	27	1.357	1.374	933
Mumps Military	170	423	423	5,796	8 8.792	12.822
Pertussis	14	18	18	5.746	-.721	12.822 514
Rubella (Garman measles)	233	342	680	2.448	8.515	12.109
Tetanus	-	1	3	20	20	22
Tubarculos is	525	486	508	11.088	11.323	12.598
Tularemia	1	4	3	37	61	49
Typhoid fever	9	15	7	145	175	146
Typhus fever, tick borne (Rky. Mt. spotted)	17	29	26	145	143	143
Venereal diseases: Gonormea: Civilian	16.956	16,850	16.577	393.546	398.351	394.959
Military	408	480	471	10,951	11.526	11.526
Syphilis, primary \% secondary: Civilian	550	381	358	10.961	10.120	10.120
Military	4	9	5	139	130	131
Rabies in animals	168	121	60	2.692	2,004	1,226

TABLE II. Notifiable diseases of low frequency, United States

	CUM. 1980		Cum. 1980
Anthrax	-	Poliomyalitis: Total	4
Botulism (Calif. 1)	20	Paralytic	2
Cholera (Calif. 3)	6	Paittacosis (Utah 1)	30
Congenital rubella syndrome (Mass. 1, Ore. 1, Calif. 1)	38	Rabies in man	-
Leprosy (Va. 1, Miss. 1)	73	Trichinosis	46
Leptospirosis	23	Typhus fever, flea-borne (endemic, murine)	20
Plague (N. Mex. 111	1		

All delayed reports and corrections will be included in the following week's cumulative totals.

TABLE III. Cases of specified notifiable diseases, United States, weeks ending
May 31, 1980, and June 2, 1979 (22nd week)

Guam	NA	NA	NA	NA	-	NA	-	-	NA	NA
P.R.	NA	NA	NA	1						
V.I.	-	-	27	-	-	-	-	-	2	5
Pac. Trust Terr.	NA	NA	NA	NA	NA	-	NA	-	-	NA

NN: Not notifiable.
All delayed reports and corrections will be included in the following weak's cumulative totals.

TABLE III (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending
May 31, 1980, and June 2, 1979 (22nd week)

REPORTING AREA	MEASLES (RUBEOLA)			MENING OCDCCAL INFECTIONS TOTAL			MUMPS		PERTUSSIS	RUBELLA		tetanus CUM 1980
	1980	CUM. 1980	CUM. 1979	1980	CUM. 1980	$\begin{aligned} & \text { CUM. } \\ & 1979 \end{aligned}$	1980	CUM.	1980	1980	CUM. 1980	
UNITED STATES	598	9,514	8.920	32	1,363	1.382	170	5.794	14	233	2,448	20
NEW ENGLAND	12	574	240	2	81	65	11	502	1	7	172	-
Maine	-	25	11	-	3	2	10	267	-	3	66	-
N.H.	6	264	25	-	6	7	1	14	-	1	29	-
Ve.	2	223	90	-	9	3	-	5	-	-	I	-
Mass.	4	41	11	-	28	21	-	111	1	3	57	
R.I.	-	2	102	-	6	4	-	16	-	-	7	-
Conn.	-	19	1	2	29	28	-	89	-	-	12	-
MID. ATLANTIC	158	2,956	895	11	251	194	12	661	4	77	380	2
Upstate N.Y.	23	554	434	1	84	69	2	77	4	6	146	1
N.Y. City	60	807	398	1	71	51	5	52	-	5	67	-
N.J.	46	638	42	3	46	51	3	81	-	1	61	-
Pa.	29	¢ 57	21	6	5 C	23	2	651	-	65	106	1
E.N. CENTRAL	158	1.474	2.233	-	144	138	56	2.246	3	58	625	-
Ohio	-	154	123	-	52	48	27	983	3	-	2	-
Ind.	4	80	145	-	27	31	5	87	-	37	258	-
III.	41	249	1.052	-	19	3	4	254	-	10	141	-
Mich.	8	192	554	-	38	40	11	684	-	1	110	-
Wis.	105	799	355	-	8	16	9	238	-	10	114	-
W.N. CENTRAL	49	1,068	1,111	-	50	46	8	200	-	8	162	2
Minn.	47	881	711	-	15	9	1	10	-	1	24	1
lowa	-	-	14	-	5	5	1	34	-	-	3	-
Mo.	-	61	350	-	18	24	-	66	-	1	38	-
N. Dak.	-	-	6	-	1	1	-	3	-	-	5	-
S. Dak.	-	-	1	-	4	2	-	1	-	-	-	-
Nabr.	-	59	-	-	-	-	-	9	-	-	-	-
Kans.	2	67	29	-	7	5	6	77	-	6	92	1
S. ATLANTIC	72	1,540	1, 376	7	330	355	35	751	3	13	249	5
Del.	-	1	1	-	2	5	2	36	-	-	-	-
Md.	-	39	7	-	32	25	26	234	-	-	49	-
D.C.	-	-	-	-	1	-	-	2	-	-	-	-
Va.	29	269	165	5	32	45	1	46	-	12	46	1
W. Va.	NA	15	48	-	11	6	NA	58	NA	NA	14	1
N.C.	1	106	102	1	66	51	1	74	-	-	40	-
S.C.	-	132	116	-	42	46	-	194	-	-	49	2
Ga.	28	669	332	-	62	55	-	1	2	-	-	-
Fla.	14	309	605	1	82	122	5	106	1	1	51	1
E.S. CENTRAL	9	250	133	4	131	107	8	725	-	-	71	3
Ky.	-	42	20	2	46	18	4	649	-	-	33	1
Tenn.	9	130	46	2	32	34	-	21	-	-	33	1
Ala.	-	17	50	-	32	25	-	11	-	-	4	1
Miss.	-	61	17	-	21	30	4	44	-	-	1	-
W.S. CENTRAL	46	819	801	6	152	223	8	197	2	3	87	3
Ark.	-	7	7	2	12	20	2	16	-	-	2	1
La.	4	13	207	4	54	86	-	57	1	-	8	1
Okla.	40	882	22	-	13	22	-	-	1	1	2	-
Tex.	2	117	565	-	73	95	6	124	-	2	75	1
MOUNTAIN	42	233	244	1	43	61	7	142	-	5	19	-
Mont.	-	1	49	-	2	4	3	45	-	-	22	-
Idaho	-	-	4	1	4	4	-	11	-	-	12	-
Wyo.	-	-	36	-	2	1	-	-	-	-	-	-
Colc.	5	13	32	-	11	4	2	30	-	-	3	-
N. Mex.	-	2	32	-	6	4	-	-	-	-	5	-
Ariz.	31	169	67	-	6	30	1	21	-	4	14	-
Utah	2	41	15	-	2	6	-	26	-	-	19	-
Nev.	4	7	9	-	10	8	1	9	-	1	4	-
PACIFIC	52	800	1.887	1	181	193	25	370	1	62	623	5
Wash.	11	153	1.022	-	33	31	6	109	-	7	59	-
Orag.	1	1	48	-	37	14	5	48	-	5	42	$\overline{5}$
Calif.	40	436	743	1	109	136	13	197	1	50	518	5
Alaska	-	5	15	-	2	4	-	10	-	-	2	-
Hawaii	-	5	59	-	-	8	1	6	-	-	2	-
Guam	Na	3	3	-	1	1	Na	3	NA	NA	-	-
P.R.	4	63	242	-	1	-	4	104	-	-	9	6
V.I.	NA	4	4	-	1	3	NA	1	NA	Na	-	-
Pac. Trust Terr.	NA	3	6	-	-	1	NA	8	NA	NA	1	-

NA: Not available.
All delayed reports and corrections will be included in the following week's cumulative fotals.

TABLE III (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending
May 31, 1980, and June 2, 1979 (22nd week)

feporting area	TUBERCULOSIS		TULA. femia	TYPHOID FEVER		TYPHUS FEVER (Tiek-borne) (AMSF)		Venereal diseases (Civilian)						RABIES (in Animals)			
			GONOAFHEA			SYPHILIS IPri. \& Sae.)											
	1980	$\begin{aligned} & \text { CUM. } \\ & 1980 \end{aligned}$		CUM. 1980	1980			$\begin{aligned} & \text { CUM. } \\ & 1980 \end{aligned}$	1980	$\begin{aligned} & \text { CUM. } \\ & 1980 \end{aligned}$	1980	CUM. 1980	$\begin{aligned} & \text { CUM. } \\ & 1979 \end{aligned}$	1980	CUM. 1980	CUM. 1979	CUM. 1980
UNITED STATES	525	11,088	37	9	145	17	145	16.956	393.546	398.357	550	10,961	10.120	2,692			
NEW ENGLAND	13	307	-	-	4	-	1	365	10.123	10.158	8	287	183	22			
Maine	-	23	-	-	-	-	-	16	590	701	-	4	5	16			
N.H.	-	6	-	-	-	-	-	15	332	345	-		12	1			
V_{2}	-	9	-	-	-	-	-	7	246	226	-	3	-	-			
Mass.	10	161	-	-	2	-	1	146	4.163	4.114	3	186	114	1			
R.I.	2	35	-	-	1	-	-	35	605	836	$\overline{5}$	11	6	-			
Conn.	1	73	-	-	1	-	-	146	4,181	3.936	5	83	46	4			
MID. ATLANTIC	68	1.890	1	6	40	-	4	1.576	42.575	42.212	65	1,576	1.550	6			
Upstate N.Y.	14	368	-	-	5	-	1	299	7.948	6.603	4	128	111	3			
N.Y. City	27	683	1	3	17	-	-	700	16.937	16.838	47	1.037	1.059	-			
N.J.	13	389	-	2	8	-	2	152	7,610	7.952	9	206	202	2			
Pa.	14	450	-	1	10	-	1	425	10.080	10.819	5	205	178	1			
E.N. CENTRAL	70	1.598	1	-	10	-	1	2,421	61,768	61.737	46	1. 051	1.350	366			
Ohio	22	275	-	-	3	-	1	638	16.667	17,078	-	163	240	18			
Ind.	7	174	-	-	-	-	-	248	6,083	5,269	1	87	71	42			
III.	18	583	-	-	3	-	-	668	19.313	19,718	26	583	834	209			
Mich.	20	475	1	-	3	-	-	641	13,672	14,163	19	174	155	1			
Wis.	3	91	-	-	1	-	-	226	6.033	5.509	-	46	44	96			
W.N. CENTRAL	24	376	6	1	3	-	2	578	17.655	19.215	4	126	132	859			
Minn.	2	50	1	-	1	-	-	50	2,981	3.305	3	44	39	77			
lowa	-	32	1	-	-	-	-	85	1,930	2.400	-	8	21	172			
Mo.	8	179	3	-	-	-	2	236	7,554	8. 222	-	63	50	230			
N. Dak.	-	20	-	-	-	-	-	14	258	332	-	-	1	91			
S. Dak.	2	22	-	-	1	-	-	33	538	663	-	1	1	157			
Nohr.	8	20	1	-	-	-	-	102	1,490	1,247	-	4	2	43			
Kans.	4	53	-	1	1	-	-	58	2,904	3,046	1	6	18	89			
S. ATLANTIC	131	2,565	7	-	20	7	96	4.886	96.939	95.465	121	2,600	2,417	174			
Del.	5	36	-	-	1	-	-	68	1,325	1.562	-	6	13	-			
Md.	15	334	1	-	2	1	9	326	10.108	11.660	3	178	170	-			
D.c.	8	140	-	-	3	-	-	277	6,890	6,092	11	181	186	-			
$V \mathrm{~V}$.	23	289	-	-	3	2	15	387	8,337	9.127	15	234	233	4			
W. Va.	NA	102	-	NA	1	NA	1	NA	1,157	1.362	NA	10	37	3			
N.C.	10	430	2	-	1	3	46	644	14.402	14.078	6	189	200	4			
S.C.	10	228	-	-	3	1	20	491	9.337	8,801	10	136	112	30			
Ga.	23	331	4	-	-	-	3	769	18.213	18.627	28	782	646	96			
Fla	37	675	-	-	6	-	2	1.924	27.170	24,156	48	884	820	37			
E.S. CENTRAL	38	1,020	4	-	5	3	13	1.550	32,386	34.364	53	868	657	155			
Ky.	3	215	-	-	2	1	1	216	4.698	4.421	6	68	66	67			
Tenn.	17	350	4	-	-	1	8	459	11.320	12.072	15	347	274	72			
Ala	6	282	-	-	1	1	3	538	9.693	10,450	-	173	133	16			
Miss.	12	173	-	-	2	-	1	337	6.675	7,421	32	280	184	-			
W.S. CENTRAL	73	1.110	13	-	16	6	26	1.993	51.087	51.975	120	2,148	1,768	796			
Ark.	5	107	11	-	-	1	5	258	3.817	4,003	5	72	51	102			
La.	13	208	-	-	-	-	-	385	9.072	9,207	26	509	412	6			
Okla	8	111	1	-	1	5	13	177	5,057	4.672	6	39	33	132			
Tex.	47	684	1	-	15	-	8	1.173	33.141	34,093	83	1,528	1. 272	556			
MOUNTAIN	12	301	3	2	9	1	2	509	15,210	15,795	46	275	197	73			
Mont.	-	11	1	-	1	1	1	17	556	797	-	1	6	9			
Idaho	-	10	1	1	1	-	-	40	711	655	-	16	14	-			
Wyo.	2	15	-	-	-	-	-	27	435	362	-	7	5	-			
Colo.	2	34	-	-	2	-	-	225	4.058	4,185	6	65	47	-			
N. Mex.	1	66	-	-	1	-	-	30	1,884	2.080	8	52	34	20			
Ariz.	7	131	1	-	2	-	-	68	4.219	4.480	31	93	60	44			
Utah	-	19	-	1	2	-	1	30	713	813	-	5	3	-			
Nev.	-	15	-	-	-	-	-	72	2.634	2,443	1	36	28	-			
PACIFIC	96	1.921	2	-	38	-	-	3,078	65.803	67.436	87	2,030	1. 866	241			
Wash.	18	159	2	-		-	-	221	5.330	5.785	NA	91	111	-			
Oreg.	2	80	-	-	4	-	-	181	4.715	4.259	-	44	82	-			
Calif.	74	1.639	2	-	34	-	-	2,551	52,694	54.038	84	1, 817	1.618	198			
Alaska	\%	24	-	-	-	-	-	78	1.612	2,215	1	4	12	43			
Hawaii	2	19	-	-	-	-	-	47	1.452	1.139	2	74	43	-			
Guam	NA	15	-	NA	-	NA	-	NA	31	42	NA	-	-	-			
P.R.	2	60	-	-	1	$\stackrel{+}{\square}$	-	30	2.083	859	13	228	201	20			
V.I.	NA	-	-	NA	-	NA	-	NA	74	81	NA	8	3	-			
Pac. Trust Terr.	NA	23	-	NA	-	NA	-	NA	181	207	NA	-	1	-			

NA: Not available
All delayed reports and corrections will be included in the following week's cumulative totals.

TABLE IV. Deaths in 121 U.S. cities, * week ending May 31, 1980 (22nd week)

heporting area	ALL CAUSES, by age (YEARS)					$\begin{aligned} & \text { P\& } 1^{\bullet-} \\ & \text { TOTAL } \end{aligned}$	REPORTING AREA	all caldes, gy age (years)					$\left\lvert\, \begin{aligned} & \text { PRI } \\ & \text { TOTAL } \end{aligned}\right.$
	$\begin{gathered} \text { ALL } \\ \text { AGES } \end{gathered}$	>65	45.64	25-44	<1			ALL AGES	>85	45-6A	25-44	<1	
NEW ENGLAND	608	411	133	29	16	37	S. ATLANTIC	1,196	695	333	99	34	40
Boston, Mass.	175	116	36	11	6	16	Atlanta, Ga.	121	69	36	13	2	6
Bridgeport, Conn. $\dagger \dagger$	40	28	9	2	1	3	Baltimore, Md.	235	125	80	14	5	2
Cambridga, Mass.	22	18	3	-	-	4	Charlotte, N.C.	59	35	17	4	3	4
Fall River, Mass.	32	22	7	2	-	-	Jacksonville, Fla.	92	54	28	7	-	4
Hartiord, Conn.	61	38	14	3	1	1	Miami, Fla.	142	84	33	12	5	-
Lowall, Mass.	34	18	12	2	1	2	Nortolk, Va.	48	28	16	1	2	3
Lynn, Mass.	16	12	4	-	-	-	Aichmond, Va.	63	35	20	8	-	5
Naw Badford, Mass.	19	16	1	1	-	3	Sevannah. Ga.	40	26	11	1	2	1
Naw Haven, Conn.	46	26	14	-	4	2	SL Petershurg. Fla.	84	62	18	1	2	6
Prowidence, R.I.	52	37	11	2	1	3	Tampa, Fla.	52	28	14	7	2	2
Somervilla, Mass	2	2	-	-	-	-	Washington, D.C.	219	122	53	27	9	6
Springfield, Mass	38	23	13	1	1	-	Wilmington, Dal.	41	27	7	4	2	1
Watartury, Conn.	32	22	5	3	1	2							
Worcestir, Mass.	39	33	4	2	-	1							
							E.S. CENTRAL	639	372	177	45	15	27
							Birmingham, Ala.	78	54	16	4	-	2
MID. ATLANTIC	2,302	1,527	485	183	47	88	Chattanooga, Tenn.	40	33	9	2	-	2
Albany, N.Y.	39	27	7	1	3	-	Knaxville, Tenn.	49	33	9	6	1	-
Allentown, Pa	20	13	7	-	-	-	Louiswille, Ky.	79	42	28	3	2	7
Buffalo, N.Y.	120	78	33	4	2	4	Memphis, Tenn.	170	92	49	16	2	8
Camden, N.J.	33	21	9	1	1	1	Mobile, Ala.	50	28	15	2	2	3
Elizabath, N.J.	19	11	5	-	1	-	Montgomery, Ala-	56	32	18	2	3	2
Erie, Pa. \dagger	30	16	8	2	3	1	Nashville, Tenn.	111	58	33	10	5	3
Jarsey City, N.J.	48	34	7	3	2	2							
Nawark, N.J.	60	24	20	8	3	6							
N.Y. City, N.Y.	1.306	891	242	120	19	44	W.S. CENTRAL	1,063	602	277	88	39	31
Patarson, N.J.	26	16	7	1	1	-	Austin, Tex.	29	17	6	1	3	2
Philadalphia, Pa, \dagger	195	114	48	21	6	13	Baton Rouga, La.	41	32	3	2	1	2
Pittsburgh, Pat \dagger	61	35	20	4	1	-	Corpus Christi, Tex.	34	18	8	4	3	-
Heading, Pa	28	25	3	-	-	1	Dallas, Tex.	124	59	36	16	7	1
Rochestar, N.Y.	113	al	21	7	2	8	El Paso, Tex.	52	33	12	2	2	1
Schenectady, N.Y.	24	15	6	3	-	3	Fort Worth, Tax.	63	46	11	2	2	6
Scranton, Pat \dagger	20	15	6	1	-	-	Houstion, Tex.	302	147	101	31	6	7
Syracuse. N.Y.	83	54	23	3	2	2	Little Rock, Ark.	54	38	9	2	2	3
Trenton, N.J.	34	23	9	1	1	-	New Orieans, La	128	72	27	15	4	2
Utien, N.Y.	18	16	1	1	-	1	San Antonio. Tex.	138	78	39	9	4	5
Yonkers, N.Y.	25	20	3	2	-	2	Shraveport, La.	39	21	13	1	4	-
							Tulsa, Okla	59	41	12	3	1	2
E.N. CENTRAL	1,980	1,233	488	118	83	58							
Akron, Ohio	53	34	12	4	2	-	MOUNTAIN	521	299	122	40	18	12
Canton, Ohio	44	29	11	3	1	2	Albuquerque, N. Mex. 14	153	28	13	6	1	2
Chicago, III.	477	279	127	32	22	15	Colo. Springr, Colo.	25	18	3	-	-	-
Cincinnati, Ohio	119	81	32	2	1	4	Danver, Colo.	92	51	26	9	4	3
Cleveland, Ohio	172	91	52	12	13	6	Laa Vegas, Nev.	79	43	23	6	1	4
Columbus, Ohio	42	59	19	7	3	3	Ogden, Utah	15	11	3	-	1	1
Dayton, Ohio	90	60	19	7	1	2	Phoenix, Ariz.	94	55	20	4	6	1
Datroit, Mich.	231	144	52	21	8	4	Puebla, Colo.	27	18	5	2	1	1
Evansville, Ind.	40	26	9	3	1	2	Salt Lake City, Utrah	52	26	10	4	3	-
Fort Wayne, Ind.	40	28	8	2	1	1	Tucson, Ariz.	84	49	19	9	1	-
Gary, Ind.	16	1	9	-	-	1							
Grand Papids, Mich.	56	40	9	3	2	4							
Indiznapolis, Ind.	145	90	36	5	12	1	PACIFIC	1,542	950	358	122	56	51
Madison, Wis.	12	7	4	-	1	1	Berkelay, Calif.	15	11	2	1	-	1
Milwaukee, Wis.	142	101	32	1	5	2	Fresno, Calif.	50	33	11	7	3	4
Paoria, III.	34	20	8	1	5	2	Glendale, Calif.	13	9	3	1	-	1
Rockford, 111.	47	24	10	7	2	7	Honolulu, Hawaii	56	32	17	3	2	6
South Bend, Ind.	34	22	8	3	1	1	Long Beach, Calif.	87	52	26	4	3	-
Toledo, Ohio	86	56	22	2	2	-	Los Angalas, Calif.	370	216	81	42	13	8
Youngrown, Ohio	50	35	9	3	1	-	Oakland, Calif.	91	55	21	9	3	3
							Pasadena, Calit.	34	23	8	2	1	6
							Portland, Orag.	99	61	27	2	5	-
W.N. CENTAAL	638	428	137	21	24	20	Sacramanto, Calif.	83	45	24	5	4	3
Des Moines, lowa	59	37	14	2	2	1	San Diego, Calif.	129	81	2 d	8	6	-
Duluth, Minn.	23	20	3	-	-	1	San Francisco, Calif.	135	84	34	10	3	-
Kancas City, Kans.	32	15	13	1	1	1	San Jose, Calif.	166	106	31	18	8	8
Kansas City, Mo.	111	71	25	0	4	2	Soattle, Wash.	112	75	27	7	2	5
Lincoln, Nebr.	28	19	4	2	1	2	Spokane, Wash.	59	41	11	2	3	4
Minneapolis, Minn.	81	04	9	3	4	2	Tacoma, Wash.	35	26	7	1	-	2
Omaha, Nebr.	60	38	14	1	5	-							
St. Lauis, Mo.	136	49	33	1	5	4							
St. Paul, Minn.	47	35	9		2	1	TOTAL 10	0,449	6,517	2,510	745	332	364
Wichita, Kans	61	38	13	4		0							

"Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fatal deaths are not included.
-*Preumonia and influenza
\dagger Because of changes in reporting methods in these 4 Pennsylvania cities, these numbers are partial counts for the current weak. Complete counts will be available in 4 to 6 weeks.
\dagger †Data not available this week. Figures are estimates based on average percent of regional total.

Measles in High School Students - Pennsylvania

During the first 3 months of 1980, measles cases occurred in 3 isolated areas of eastern, central, and south-central Pennsylvania. Analysis of the central Pennsylvania outbreak again demonstrates that the age at which a child is vaccinated is more important in preventing disease than the time that has passed since vaccination (1,2).

A total of 52 cases* with onset from January 18-March 15 were investigated. \dagger The age distribution of these cases is shown in Table 1. Of the 52 cases, 37 (71.2%) occurred in the parochial school system, which consists of 3 elementary schools and a high school. The parochial high school had 20 of these cases among its 606 students, an attack rate of 3.3%.

The high school's health records were reviewed, and data were analyzed in light of the susceptibility status of the students (Table 2). A child was considered susceptible to measles if his or her health record had 1) no evidence of measles immunization, 2) a past history of measles disease without serologic confirmation, or 3) evidence of measles immunization before 12 months of age or before 1968. For those children vaccinated
*A case was defined as 1) a rash illness with laboratory confirmation or 2) a strict interpretation of the standard case definition of fever, rash, cough or coryza, or conjunctivitis.
tData from other affected areas in Pennsylvania are being collected and will be similarly analyzed.
TABLE 1. Age distribution of measles cases, central Pennsylvania, January-March, 1980

Age in years	Number of cases	Percent
$0-4$	2	3.8
$5-9$	9	17.3
$10-14$	30	57.7
$15-19$	11	21.2
Total	52	100.0

TABLE 2. Attack rates for measles at a parochial high school, by immunization or disease history, central Pennsylvania, January-March, 1980

Student's history of immunization or disease	Total enrollment	Number of cases	Attack rate percent
No immunization history	64	6	9.4
No immunization history; history of measles disease	37	3	8.1
Immunized before 1968: a. at age less than 12 months b. at age 12 months or older	$\begin{array}{rr} 160 \\ & 23 \\ 137 \end{array}$	$\begin{array}{rr}8 & \\ 4 \\ \\ & 4\end{array}$	$\begin{array}{r} 5.0 \\ 17.4 \\ 2.9 \end{array}$
Immunized in 1968 and after: a. at age less than 12 months b. at age 12 months or older	332 2 330	$2 \begin{array}{r} \\ \\ \\ \\ 2\end{array}$	$\begin{aligned} & 0.6 \\ & 0.0 \\ & 0.6 \end{aligned}$
Inadequate records	13	1	7.7
Total	606	20	3.3

Measles - Continued

before 1968, the attack rate was 17.4% for those under 12 months at the time of vaccination, but only 2.9% for those vaccinated at 12 months of age or older. However, attack rates were similar for those with a recorded history of measles (8.1%) and for those whose records indicated neither disease nor vaccination (9.4\%).

Voluntary measles vaccination programs for susceptible children were held in all schools after immunization records were audited.
Reported by R Gens, MD, B Shaw, EJ Witte, VMD, Acting State Epidemiologist, Commonwealth of Pennsy/vania Dept of Health; Immunization Div, Bur of State Services, CDC.
Editorial Note: These data demonstrate that age at vaccination is more important than duration of time since vaccination in indicating immunity and that a parental history of disease is not an accurate indicator of immunity. As the Immunization Practices Advisory Committee stresses, the only acceptable proof of immunity is documentation of physiciandiagnosed measles or of vaccination given to a child over 12 months old (3).

References

1. Marks JS, Halpin TJ, Orenstein WA. Measles vaccine efficacy in children previously vaccinated at 12 months of age. Pediatrics 1978;62:955-60.
2. Shelton JD, Jacobson JE, Orenstein WA, et al. Measles vaccine efficacy: influence of age of vaccination versus duration of time since vaccination. Pediatrics 1978;62:961-4.
3. MMWR 1978;27:427-37.

National Recall of Mushrooms Possibly Contaminated with Botulinal Toxin

Type B botulinal toxin has been identified by the Food and Drug Administration (FDA) in 2 swollen \#10 cans (4 lb., 4 oz.) of mushrooms produced by Emil Lerch, Inc., of Hatfield, Pennsylvania. As of June 3, no cases of botulism associated with this product had been reported. A national recall of all \#10 cans produced by this company since February 1977 was initiated on June 3; cans of this size usually are purchased by institutions such as restaurants or cafeterias, though it is conceivable that individual consumers might also purchase them.

The cans involved in the recall are labeled Even Tide brand and Chef's Finest brand, both packed by Emil Lerch, Inc. Also included are cans packed under the following private labels: Friends Golden Glow, distributed by Friends Coffee Company, North Canton, Ohio; Elizabeth Park, distributed by S. Vogel Sons, East Hartford, Connecticut; Railtons Barco brand and Railtons Natural brand, both distributed by B.A. Railton Company, Northlake, Illinois; Romayo brand, distributed by Romeo \& Sons, Inc., Uniontown, Pennsylvania; Mijla Special Mushrooms brand, distributed by Aljim Wholesale Grocery Company, Waterbury, Connecticut; Mando's brand, distributed by Mando's Italian Foods, Huntsville, Alabama; Pizza Systems, Inc., brand, distributed by Pizza Systems, Inc., Memphis, Tennessee; Veteran brand, distributed by Veteran Supply Company, Chicago, Illinois; Pomoco brand, distributed by Potter McCune Company, McKeesport, Pennsylvania.

The letters " E " and " L," indicating manufacture by Emil Lerch, Inc., appear as 2 of 4 digits of the top line of a 2-line code stamped on the bottom of each recalled can. Reported by Epidemiology Br, Office of Executive Director, Regional Operations, FDA, and by Enteric Diseases Br, Bacterial Diseases Div, Bur of Epidemiology, CDC.

Follow-up on Mount St. Helens

First analyses of settled volcanic dust collected in Washington State have been completed at the National Institute for Occupational Safety and Health (NIOSH) in Cincinnati. No significant elevations for any of 30 trace metals tested have been found.

On May 18 and 19, Region X of the Environmental Protection Agency reported that levels of total suspended particulates in the air ranged as high as $30,000-35,000 \mu \mathrm{~g} / \mathrm{m}^{3}$ in the most heavily affected areas-levels which could potentially cause respiratory disease in the general population.

Preliminary NIOSH analyses have confirmed the presence of cristobalite at a concentration of $4 \%-6 \%$ of the total ash. Cristobalite is 1 of the 3 most common crystalline forms of free silica encountered in industry. Silicosis is an industrial disease that follows prolonged inhalation of free (crystalline) silica (chemical structure SiO_{2}). At this low level of cristobalite in the ash, the potential for silicosis needs to be evaluated in workers who breathe high concentrations of fine particles of this ash for prolonged periods.

NIOSH has sent a team of industrial hygienists to the area to assist in the measurement of personal dust exposures of municipal workers; NIOSH will also identify other occupational groups with the potential of high exposure to assess possible health effects. It is not likely that the general population is at risk of silicosis from exposure to the above level of crystalline silica. However, given the high levels of total suspended particulates in the air, the uncertainty about future activity of the volcano and the persistence of ash, and the preliminary nature of these results, CDC will continue to expand surveillance of the population.

To date, 21 hospitals in the CDC surveillance network-all in areas with volcanic ash fallout-have completed reporting on the number of emergency-room visits for the period May $11-24,1980$. In this surveillance area, the Moses Lake, Washington, area has been affected most by the eruptions; thus, the 3 hospitals in that area are reported separately from the others in Washington State (Table 1).

The first volcanic eruption was on May 18. In the Moses Lake area, emergency-room visits increased 34.2% during the week after the eruption compared with the previous week; total hospital admissions increased by 5.5% during this time. A CDC team has

TABLE 1. Percent change in hospital emergency-room visits in 21 selected hospitals, Washington, Idaho, Montana, May 11-17 and May 18-24, 1980

Week	Moses Lake Area, Washington	Washington (other)	Idaho	Montana
May 11-17	389	2,179	670	2.050
May 18-24	522	2,237	690	2,215
Percent change	+34.2	+2.7	-9.1	+8.0

[^0]
Mount St. Helens - Continued

departed for Moses Lake to review hospital and emergency-room records and to conduct a field survey of approximately 200 families and exposed workers to collect additional information on potential health problems.

Efforts are also under way to identify high-risk groups in the population, such as those with chronic respiratory disorders, for further evaluation.
Reported by J Allard, PhD, JA Beare, MD, Washington State Dept of Social and Health Services; NIOSH, Chronic Diseases Div, Field Services Div, Bur of Epidemiology, Tuberculosis Control Div, Bur of State Services, CDC.

Erratum in New Textbook

There is a potentially serious typographical error in Principles and Practice of Infectious Diseases (John Wiley and Sons, New York, 1979). Table 4, Page 2107 should state that intravenous quinine for malaria is to be given over 60 minutes, not 6 minutes, as stated. The corresponding text is correct. This correction is being published at the request of the editors of the book, Gerald L. Mandell, M.D., (Charlottesville, Virginia), R.G. Douglas, M.D., (Rochester, New York), and J.E. Bennett, M.D., (Bethesda, Maryland). Correspondence should be addressed to Dr. Mandell at the Division of Infectious Disease, Box 385, University of Virginia School of Medicine, Charlottesville, Virginia 22908.
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE / CENTER FOR DISEASE CONTROL ATLANTA, GEORGIA 30333 OFFICIAL BUSINESS

Postage and Fees Paid U.S. Department of HHS HHS 396
Director, Center for Disease Control William H. Fonge, M.D.
Director, Bureau of Epidemiology Philip S. Brachman, M.D.
Editor Michael B. Gregg, M.D.
Managing Editor Anne D. Mather, M.A.
Mathematical Statistlclan Keowhan Chol, Ph.D.

[^0]: The Morbidity and Mortality Weekly Report, circulation 88,700 , is published by the Center for Disease Control, Atlanta, Georgia. The data in this report are provisional, based on weekly telegraphs to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday.

 The editor welcomes accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health officials. Send reports to: Center for Disease Control, Attn: Editor, Morbidity and Mortality Weekly Report, Atlanta, Georgia 30333.

 Send mailing list additions, deletions, and address changes to: Center for Disease Control, Attn: Distribution Services, GSO, 1-SB-36, Atlanta, Georgia 30333. When requesting changes be sure to give your former address, including zip code and mailing list code number, or send an old address label.

